TD Electrostatique 2020-2021

TD d'Electrostatique Série n°2 ENSA1

Exercice I.

Trois charges q_1 , q_2 et q_3 sont situées au sommet d'un carré de côté a de telle sorte que q_1 , et q_3 , soient diamétralement opposées.

- 1°) Les trois charges sont supposées identiques et de même signe que q'. Calculer dans ce cas la force exercée sur la charge q' située
 - au centre du carré
 - au quatrième sommet
- 2°) Dans le cas où q' est situé au quatrième sommet et $q_1 = q_3 = q$. Calculer le rapport q_2 / q pour que la résultante des forces exercées sur q' soit nulle.

Exercice II.

- 1°) Soient deux charges q situées sur l'axe y, de part et d'autre de l'origine à une distance égale d/2. Déterminez le champ électrique le long de l'axe z.
- 2°) On remplace la charge de droite par -q. Reprenez la question précédente pour cette configuration.

Exercice III

Une charge électrique ponctuelle q, positive, est placée en un point O. On considère une demi-droite A_x , telle que OA lui est perpendiculaire.

- 1°) Donner l'expression de la circulation du vecteur champ électrostatique \vec{E} créé par la charge q, entre les points A et B sur A_x (On posera $OA = r_A$ et $OB = r_B$)
- 2°) On considère un arc de cercle A'B centré en O, de rayon r_B et limité par A_x et la droite OA. Calculer la circulation de \vec{E} le long du trajet (AA' + A'B). Conclure et en déduire une propriété du vecteur champ électrostatique

Exercice VI

Soient -q et +q deux charges ponctuelles placées respectivement aux points A et B symétriques par rapport à O; on posera AB = l.

- 1°) Donner, en fonction de r_1 et r_2 , l'expression du potentiel électrostatique créé par ces charges au point M en appliquant le principe de superposition.
- 2°) Si la position du point M est repérée en coordonnées polaires r et $_{n}$, calculer le potentiel au point M lorsque r>> l (dans ce cas on donne le nom de dipôle électrique à ce doublet de charges).
- 3°) En déduire le champ électrostatique créé au point M par le dipôle électrique ainsi constitué.
- 4°) Etudier les variations de \vec{E} en fonction de ".
- 5°) Représenter la géométrie des lignes de champ et celles des équipotentielles.

TD Electrostatique 2020-2021

Exercice V. Fil circulaire uniformément chargé

Soit un fil circulaire uniformément chargé de rayon R centré à l'origine et orthogonal à l'axe des z, de densité linéique $\}$. On considère un point M de l'axe des z situé à une distance z de l'origine.

- 1°) En utilisant la loi de Coulomb, calculer le champ électrique \vec{E} au point M.
- $2^\circ)$ En déduire le potentiel électriques V engendrés par l'anneau le long de l'axe du cercle.
- 3°) Calculer le comportement du potentiel V et du champ électrique \vec{E} lorsque le point M va à l'infini (z>>R).

Exercice VI. Disque uniformément chargé

Soit un disque de rayon R centré à l'origine et contenu dans le plan des x et y, uniformément chargé de densité surfacique \dagger .

- 1°) En découpant le disque en couronnes de rayon ... et d'épaisseur infinitésimale d..., déterminer le champ et le potentiel électriques engendrés par le disque en un point M de l'axe des z situé à une distance z de l'origine.
- 2° Décrire le comportement du champ électrique \vec{E} lorsque le point M va à l'origine (c'est- à-dire $z \ll R$).
- 3°) En utilisant le développement limité $(1+x)^{\Gamma}$ $1+\Gamma x$ valide pour x << 1, calculer le comportement du champ électrique \vec{E} lorsque le point M va à l'infini (z>>R).
