TD 2 Chimie:

Ce fichier est préparé par Compil'Court d'ENSA Agadir.

 \forall error found \in doc: contact us on discord.

Let's make ENSA AGADIR great again!

Exercice 01

La mesure du pH d'une solution d'acide benzoïque C₆H₅COOH de concentration 10⁻²mol/l donne pH=3, 1.

- 1. Montrer que l'acide est un acide faible
- 2. Calculer la concentration des espèces en solution
- 3. Déterminer le p K_A ($C_6H_5COOH/C_6H_5COO^-$)

Corrigé:

1. On suppose que l'acide est fort.

donc pH=
$$-\log(C_0) = -\log(10^{-2}) = 2 \neq 3, 1$$

Ce qui absurde, donc l'acide est faible.

2. a. Pour
$$H_3O^+$$
: on a $[H_3O^+] = 10^{-pH} = 10^{-3,1} = 7,94.10^{-4} mol/l$

b. Pour OH^{-} : on a $[H_{3}O^{+}].[OH^{-}] = K_{e}$, donc:

$$[OH^{-}] = \frac{K_e}{[H_3O^{+}]} = 10^{pH-pK_e} = 10^{3,1-14} = 10^{-10,9} = 1,26.10^{-11} \text{mol/l}$$

c. Pour C₆H₅COO⁻. on a par neutralité de solution :

$$[C_6H_5COO^-] + [OH^-] = [H_3O^+] \iff [C_6H_5COO^-] = -[OH^-] + [H_3O^+]$$

AN : $[C_6H_5COO^-] = 7,94.10^{-4} \text{ mol/l b. Pour } C_6H_5COOH : \text{on a par conservation de matière :}$

$$C_0 = C_{\text{acide}_t} + C_{\text{base}_t}$$

À $t = t_{\text{finale}} : C_{\text{acide}_{\text{finale}}} = C_0 - C_{\text{base}_{\text{finale}}}$

AN: $[C_6H_5COOH] = 100.10^{-4} - 7,94.10^{-4} = 9,206.10^{-4} \text{mol/l}.$

3. L'acide est faible :

Donc

$$pH = \frac{1}{2}(pK_A - \log(C_0)) \iff pK_A = 2pH + \log(C_0)$$

 $AN : pK_A = 4, 2$

Exercice 02

Trois solutions d'acide sulfurique, d'acide chlorhydrique et d'acide propionique (CH_3CH_2COOH acide faible) ont le même ph. 15 ml d'une solution de soude 10⁻² mol/l sont nécessaires pour neutraliser 200ml de la solution d'acide chlorhydrique alors qu'il faut 40ml de cette solution de soude pour neutraliser 10ml de la solution d'acide propionique.

Calculer:

- 1. le pH commun des solutions
- 2. la molarité de chacune de ces solutions
- 3. la constante d'acidité de l'acide propionique

Corrigé:

1. On a:

$$[HCl]V_{HCl} = [NaOH].V_{NaOH} \iff [HCl] = \frac{[NaOH].V_{NaOH}}{V_{HCl}}$$

Or HCl est un acide fort alors :

$$\mathrm{pH} = -\log\left([\mathrm{HCl}]\right) = -\log\left(\frac{[\mathrm{NaOH}].V_{\mathrm{NaOH}}}{V_{\mathrm{HCl}}}\right) = 3,12$$

2. a. On a $M_{\rm HCl} = 7, 5.10^{-4} \text{mol/l}$

b. $M_{\text{C}_2\text{H}_5\text{COOH}}V_{\text{C}_2\text{H}_5\text{COOH}}=M_{\text{NaOH}}V_{\text{NaOH}},$ donc :

$$M_{\rm C_2H_5COOH} = \frac{M_{\rm NaOH}V_{\rm NaOH}}{V_{\rm C_2H_5COOH}} = 4.10^{-2} {\rm mol/l}$$

c. On a : $N_{\rm H_2SO_4}=10^{-\rm pH}=[{\rm H_3O^+}]=10^{-3,12}$ et N=Mp (avec p=2 d'après l'équation de la réaction).

Donc:

$$N = 2M \iff M = \frac{N}{2} = 3,75.10^{-4} \text{mol/l}$$

3. L'acide est faible, donc on a :

$$pH = \frac{1}{2} (pK_A - \log (C_0)) \iff pK_A = 2pH + \log C_0$$

A.N : $pK_A = 4,84$ et $K_A = 1,44 \times 10^{-5}$

Exercice 03

Soit un acide HA de p K_A égal à 4,19 et de concentration $C_1 = 5.10^{-2} \text{mol/l}$

- 1. Calculer le pH de cette solution.
- 2. A un volume $V_1 = 100ml$ de la solution d'acide HA, on additionne un volume $V_2 = 25ml$ d'une solution contenant m = 0, 2g de soude, $M_{\text{NaHO}} = 40g/mol$
 - (a) Le mélange obtenu est-il acide, basique ou neutre? justifiez votre réponse.
 - (b) Calculer le pH du mélange à l'équivalence.
- 3. A $V_1 = 100ml$ de l'acide HA, on additionne $V_3 = 400ml$ de solution d'un autre acide HA' de constante d'acidité K_A' égale à 5,51.10⁻⁵ et de concentration C_3 égale à 6,25.10⁻²mol/l. calculer le pH de cette solution.

Corrigé:

1. Le pH de la solution :

On a

$$\frac{K_A}{C_1} = \frac{10^{-4,19}}{5.10^{-2}} = 1,29.10^{-3} < 0,01$$

Donc AH est un acide faible, par suite

$$pH = \frac{1}{2}(pK_A - \log(C_1))$$

AN: $pH = \frac{1}{2}(4, 19 - \log(5.10^{-2})) = 2,74$

2. a. Quantité de matière pour l'acide et la base :

On a:

$$C_1V_1 = n_{\text{acide}} = 5.10^{-2}.100.10^{-3} = 5.10^{-3} \text{mol/l}$$

Et on a:

$$n_{\text{base}} = \frac{m}{M_x} = \frac{0.2}{40} = 5.10^{-3} \text{mol/l}$$

Donc:

$$n_{\text{acide}} = n_{\text{base}}$$

Par suite, le milieu est neutre.

b. À l'équivalence, le mélange donne une base faible.

$$pH = 7 + \frac{1}{2}(pK_A + \log(C_2))$$

Avec
$$C_2 = \frac{C_a V_a}{V_{\text{total}}}$$

AN: $C_2 = 4 \times 10^{-2} \text{mol/l et pH} = 8,39.$

3. On a

$$\frac{K_A'}{C_{\text{A'H}}} = \frac{5,51.10^{-5}}{6,65.10^{-2}} = 8,81.10^{-4} < 0,01$$

donc l'acide A'H est faible.

Ainsi:

$$pH = -\frac{1}{2}\log(C_{AH}K_A + C_{A'H}K'_A)$$

Avec
$$C_{\text{AH}} = \frac{C_1 V_1}{V_{\text{total}}} = 10^{-2} \text{mol/l}$$
 et $C_{\text{A'H}} = \frac{C_3 V_3}{V_{\text{total}}} = 5 \times 10^{-2} \text{mol/l}$ donc par A.N pH = 2,73

Exercice 04

- 1. le pH d'une solution d'acide nitrique, HNO₃ est égal à 2. Sachant que HNO₃ est totalement dissocié en solution aqueuse, calculer la concentration molaire M_1 de cet acide.
- 2. On considère un volume $V_a = 50ml$ d'une solution contenant un mélange de deux acides : HNO_3 de concentration M_1 et HCl de concentration M_2 . On réalise le dosage de cette solution par une solution de soude de concentration M_b . Le volume versé au point d'équivalence est V_b .
 - (a) Donner la relation entre M_1, M_2, V_a et V_b au point d'équivalence.
 - (b) Calculer la concentration M_2 de l'acide chlorhydrique.
 - (c) En déduire le pH initial du mélange acide.
 - (d) Déterminer le pH de la solution au point d'équivalence. Justifiez votre réponse.

Données : $M_b = 5.10^{-2}$ et $V_b = 20ml$

Corrigé:

1. On sait que $M_1 = 10^{-\text{pH}} = [\text{H}_3\text{O}^+]$

AN : $M_1 = 10^{-2} = 0,01 \text{mol/l}$

2. a. $M_m V_a = M_b V_b$ avec $M_m = M_1 + M_2$, donc $(M_1 + M_2) V_a = M_b V_b$

b. Calculons M_2 :

$$M_2 = \frac{M_b V_b}{V_a} - M_1$$

AN:

$$M_2 = \frac{5.10^{-2}.20}{50} - 10^{-2} = 0.01 \text{mol/l}$$

c. pH = $-\log(M_1.M_2) = -\log(0,02) = 1,69$

d. dosage d'un acide fort par une base forte, $\mathrm{pH}_{\mathrm{\acute{e}q}}=7$