Année Universitaire 2020-2021 Module : Analyse 1 Prof : S.Taarabti

Série N⁰ 3 : Fonctions d'une variable réelle (1ère partie)

Exercice 1

- 1. Soit $g:\mathbb{R}\to\mathbb{R}$ une fonction périodique qui admet une limite en $+\infty$. Montrer que g est constante.
- 2. Soient $f,g:\mathbb{R}\to\mathbb{R}$ telles que f admet une limite finie en $+\infty,g$ périodique et f+g croissante. Montrer que g est constante.

Exercice 2

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que

$$\forall x \in \mathbb{R}, \quad f(x) = f(2x).$$

Montrer que f est constante.

Exercice 3

Soit

$$f: x \in \mathbb{R} \text{ avec } f(x) = \frac{\cos x}{1 + x^2}.$$

- 1. Montrer que f est majorée sur \mathbb{R} , minorée sur \mathbb{R} .
- 2. Déterminer $\sup_{x \in \mathbb{R}} f(x)$.

Exercice 4

Soient a et b deux réels.

Soit $f:\mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{\sin(ax)}{x} & \text{si } x < 0\\ 1 & \text{si } x = 0\\ e^{bx} - x & \text{si } x > 0 \end{cases}$$

Déterminer a et b pour que f soit continue sur $\mathbb R$.

Exercice 5

Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

1.
$$f(x) = \sin x \cdot \sin \frac{1}{x}$$

2.
$$g(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$$

Evercice 6

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{x \to -\infty} f(x) = -1$ et $\lim_{x \to +\infty} f(x) = 1$. Montrer que f s'annule.