Année Universitaire 2020-2021 Module : Analyse 1 Prof : S.Taarabti

Correction de Série Nº 4 : Dérivation (2^{éme} partie)

Exercice 1

Raisonnons par l'absurde et supposons f périodique. Par conséquent, il existe T>0 tel que f(T)=f(0). Par le théorème de Rolle, on en déduit qu'il existe $c\in]0,T[$ tel que f'(c)=0. C'est absurde et donc f est périodique.

Exercice 2

x=0 est bien solution de l'équation $e^x=1-x$.

Supposons qu'il existe une deuxième solution $x_0 \neq 0$, et considérons la fonction f définie par $f(x) = e^x - 1 + x$.

f est continue, dérivable sur \mathbb{R} donc en particulier sur $[0, x_0]$ si $x_0 > 0$ (ou $[x_0, 0]$ si $x_0 < 0$) et on a : $f(0) = f(x_0) = 0$.

Donc d'aprés le théorème de Rolle il existe $c \in]0, x_0[$ tel que :

f'(c) = 0 c'est à dire $e^c = -1$ ce qui est absurde.

Exercice 3

Comme $\lim_{-\infty} f = +\infty$ alors il existe $A_1 \in \mathbb{R}$ tel que, pour tout $x \leqslant A_1, f(x) \geqslant f(0)$.

Comme $\lim_{t\to\infty} f = +\infty$ alors il existe $A_2 \in \mathbb{R}$ tel que, pour tout $x \geqslant A_1, f(x) \geqslant f(0)$.

Comme f est continue sur le segment $[A_1, A_2]$ alors f admet un minimum, noté m et disons atteint en x_0 . Pour tout $x \in \mathbb{R}$, $f(x) \geqslant \min(f(x_0), f(0))$.

f admet donc un minimum sur \mathbb{R} . En ce minimum, par le théorème d'existence d'un extremum local en un point intérieur, la dérivée de f est nulle.

Exercice 4

Soit x > 0. Considérons $\varphi : t \mapsto f(t) - f(-t)$.

 $\varphi \text{ est continue sur } [0,x] \text{ et dérivable sur }]0,x \text{ [donc il existe } c \in]0,x \text{ [tel que } \varphi(x)-\varphi(0)=x\varphi'(c).$ Ainsi $f(x)-f(-x)=x\left(f'\left(c\right)+f'\left(-c\right)\right).$

Exercice 5

Comme f est lipschitzienne alors il existe $k \in \mathbb{R}^+$ telle que, pour tout $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| \le k|x - y|$$

Choisissons y = 0 pour obtenir que, pour tout $x \in \mathbb{R}$

$$|f(x) - f(0)| \leqslant k|x|$$

Par conséquent, pour tout $x \in \mathbb{R}$

$$|f(x)| \le |f(x) - f(0)| + |f(0)| \le k|x| + |f(0)|$$

Il suffit alors de poser a = k et b = |f(0)|.

Exercice 6

1. Supposons par l'absurde, qu'il existe $x_0 \in]a,b]$ tel que $g(x_0)=g(a)$. Alors en appliquant le théorème de Rolle à la restriction de g à l'intervalle $[a,x_0]$ (les hypothèses étant clairement vérifiées), on en déduit qu'il existe $c \in]a,x_0[$ tel que g'(c)=0, ce qui contredit les hypothèses faites sur g. Par conséquent on a démontré que $g(x) \neq g(a)$ pour tout $x \in]a,b]$.

- 2. D'après la question précédente, on a en particulier $g(b) \neq g(a)$ et donc p est un nombre réel bien défini et $h = f - p \cdot q$ est alors une fonction continue sur [a, b] et dérivable sur [a, b]. Un calcul simple montre que h(a) = h(b). D'après le théorème de Rolle il en résulte qu'il existe $c \in]a, b[$ tel que h'(c) = 0. Ce qui implique la relation requise.
- 3. Pour chaque $x \in]a, b[$, on peut appliquer la question 2 aux restrictions de f et g à l'intervalle [x,b], on en déduit qu'il existe un point $c(x) \in]x,b[$, dépendant de x tel que

$$\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c(x))}{g'(c(x))}.$$
 (1)

Alors, comme $\lim_{x \to b^-} \frac{f'(t)}{g'(t)} = \ell$ et $\lim_{x \to b^-} c(x) = b$, on en déduit en passant à la limite dans (1)

$$\lim_{x \to b^{-}} \frac{f(x) - f(a)}{g(x) - g(a)} = \ell$$

Ce résultat est connu sous le nom de "Théorème de l'Hôpital".

4. Considérons les deux fonctions $f(x) = \arccos x$ et $g(x) = \sqrt{x^2 - 1}$ pour $x \in [0, 1]$. Il est clair que ces fonctions sont continues sur [0,1] et dérivables sur]0,1[et que f'(x)=-1/ $\sqrt{x^2-1}$ et que $g'(x)=-x/\sqrt{x^2-1}\neq 0$ pour tout $x\in]0,1[$. En appliquant les résultats de la question 2, on en déduit que

$$\lim_{x \to 1^{-}} \frac{\operatorname{Arccos} x}{\sqrt{x^2 - 1}} = 1$$

Exercice 7

1. On applique la régle de l'Hôpital au rapport $\frac{f(x)}{g(x)} = \frac{1-\cos x^2}{x^4}$ puisque les fonctions f et g sont définies, continues et dérivables dans un voisinage de 0 et on a : $\frac{f(x)}{g'(x)} = \frac{2x \sin x^2}{4x^3} = \frac{\sin x^2}{2x^2}$

or
$$\lim_{x \to 0} \frac{\sin x^2}{2x^2} = \frac{1}{2}$$

donc $\lim_{x \to 0} \frac{1 - \cos x^2}{x^4} = \frac{1}{2}$

- $\begin{array}{l} \text{or } \lim_{x \to 0} \frac{\sin x^2}{2x^2} = \frac{1}{2} \\ \text{donc} \quad \lim_{x \to 0} \frac{1 \cos x^2}{x^4} = \frac{1}{2}. \\ 2. \quad \frac{1 \cos x^2}{x^3 \sin x} = \frac{1 \cos^2}{x^4} \cdot \frac{x}{\sin x} \\ \text{Donc } \lim_{x \to 0} \frac{1 \cos x^2}{x^3 \sin x} = \frac{1}{2} \quad (\text{ d'aprés la question 1}). \end{array}$
- 3. Posons $f(x) = \log(\sin x)$ et $g(x) = (\pi 2x)^2$ fet g sont deux fonctions définies, continues et dérivables dans un voisinage de $\pi/2$ et on a : $f(x) = \frac{\cos x}{\sin x}$ et $g'(x) = -4(\pi - 2x)$ $\frac{f(x)}{g'(x)} = \frac{-1}{4\sin x} \cdot \frac{\cos x}{\pi - 2x}$ $\lim_{x \to \pi/2} \frac{\cos x}{\pi - 2x} = \lim_{x \to \pi/2} \frac{-\sin x}{-2} = \frac{1}{2}.$

$$\begin{array}{ll}
x\to\pi/2 \ \pi-2x & x\to\pi/2 & -2 & 2 \\
\text{D'où } \lim_{x\to\pi/2} \frac{f(x)}{g'(x)} = -\frac{1}{8} & \text{et par cons\'equent } : \lim_{x\to\pi/2} \frac{f(x)}{g(x)} = -\frac{1}{8}
\end{array}$$

 $f'(x)=4x^3-3x^2=x^2(4x-3)$ donc les extremums sont dans $\left\{0,\frac{3}{4}\right\}$. Comme $f''(x)=12x^2-6x=6x(2x-1)$. Alors f'' ne s'annule pas en $\frac{3}{4}$ donc $\frac{3}{4}$ donne un extremum (minimum absolu).

Par contre f''(0) = 0 et $f'''(0) \neq 0$ donc 0 est un point d'inflexion qui n'est pas un extremum (même pas relatif, pensez à x^3).