Année Universitaire 2020-2021 Module : Analyse 1 Prof : S.Taarabti

Correction de Série N^{0} 3 : Fonctions d'une variable réelle ($\mathbf{1}^{\grave{\mathbf{e}}\mathbf{r}\mathbf{e}}$ partie)

Exercice 1

1. Notons T une période de g et $\ell = \lim_{x \to +\infty} g(x)$.

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, g(x) = g(x + nT).

Or $\lim_{n \to +\infty} x + nT = +\infty$ donc, par caractérisation séquentielle de la limite,

$$g(x) = \lim_{n \to +\infty} g(x + nT) = \ell.$$

Ainsi g est constante.

2. Comme f+g est croissante alors, selon le théorème de la limite monotone, f+g admet une limite finie ou infinie en $+\infty$.

Si cette limite vaut $+\infty$ alors cela signifie que g tend vers $+\infty$ en ∞ . Ce qui n'est pas possible car g est périodique.

Ainsi f + g possède une limite finie en $+\infty$.

Notons T une période de $g, \ell = \lim_{x \to +\infty} f(x)$ et $\ell' = \lim_{x \to +\infty} f(x) + g(x)$.

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, g(x) = g(x + nT) = (f + g)(x + nT) - f(x + nT).

Or $\lim_{n\to +\infty} x+nT=+\infty$ donc, par caractérisation séquentielle de la limite, $g(x)=\lim_{n\to +\infty} g(x+nT)=\ell'-\ell$.

Ainsi g est constante. Le résultat est faux si la limite de f en $+\infty$ vaut $+\infty$. Considérer $f: x \mapsto x$ et $g: x \mapsto \cos(x)$.

Exercice 2

Par une récurrence immédiate, on montre que

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f(2^n x) = f(x).$$

Soit $x \in \mathbb{R}$. Ainsi $f(x) = f\left(\frac{x}{2^n}\right)$.

Or $\lim_{n\to +\infty}\frac{x}{2^n}=0$ donc, par caractérisation séquentielle de la continuité en 0, on obtient que $f(0)=\lim_{n\to +\infty}f(x)=f(x)$. Ainsi f est constante.

Exercice 3

1. Pour tout $x \in \mathbb{R}$ on a :

$$0 \le |f(x)| = \frac{|\cos x|}{1+x^2} \le \frac{1}{1+x^2} \le 1$$

Par conséquent, pour tout $x \in \mathbb{R}, f(x) \in [-1,1]$ donc f est minorée (-1 est un minorant), majorée (1 est un majorant) et $\sup_{x \in \mathbb{R}} f(x) \leqslant 1$.

2. Comme f(0) = 1 on a nécessairement $\sup_{x \in \mathbb{R}} f(x) \geqslant 1$. Conclusion :

$$\sup_{x \in \mathbb{R}} f(x) = 1$$

1

Exercice 4

Pour $x \neq 0f$ est définie, continue et dérivable, on étudie la continuité et la dérivabilité en 0. Si $a \neq 0$,

$$\frac{\sin(ax)}{x} = a \frac{\sin(ax)}{ax}$$
tend vers a quand $x \to 0$.

Si a = 0:

$$\frac{\sin(ax)}{x} = 0 \underset{x \to 0}{\longrightarrow} 0 = a$$
$$e^{bx} - x \underset{x \to 0}{\longrightarrow} 1$$

f est continue en 0 si et seulement si

$$\begin{cases} \lim_{x \to 0^{-}} f(x) = f(0) \\ \lim_{x \to 0^{+}} f(x) = f(0) \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ 1 = 1 \end{cases} \Leftrightarrow a = 1$$

Exercice 5

1. La fonction est définie sur \mathbb{R}^* et elle est continue sur \mathbb{R}^* .

Il faut déterminer un éventuel prolongement par continuité en x=0, c'est-à-dire savoir si f a une limite en 0.

$$|f(x)| = |\sin x| |\sin 1/x| \leqslant |\sin x|$$

Donc f a une limite en 0 qui vaut 0.

Ainsi, en posant f(0) = 0, nous obtenons une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ qui est continue.

2. g est définie et continue sur $\mathbb{R}\setminus\{-1,1\}$

$$g(x) = \frac{1}{1-x} - \frac{2}{1-x^2} = \frac{1+x-2}{(1-x)(1+x)} = \frac{-1+x}{(1-x)(1+x)} = \frac{-1}{(1+x)}$$

Donc g a pour limite $-\frac{1}{2}$ quand x tend vers 1.

Et donc en posant $g(1) = -\frac{1}{2}$, nous définissons une fonction continue sur $\mathbb{R}\setminus\{-1\}$.

En -1 la fonction g ne peut être prolongée continument, car en -1, h n'admet pas de limite finie.

Exercice 6

Comme $\lim_{x \to -\infty} f(x) = -1$ alors il existe $a \in \mathbb{R}$ tel que $f(a) \leq 0$.

Comme $\lim_{x\to +\infty} f(x)=1$ alors il existe $a\in\mathbb{R}$ tel que $f(b)\geqslant 0$ f est continue sur le segment [a,b] et change de signe.

Ainsi, selon le théorème des valeurs intermédiaires, f s'annule.