

PREMIERE ANNEE PREPARATOIRE AU CYCLE INGENIEUR

CHIMIE

CINETIQUE CHIMIQUE

Support de cours

SOMMAIRE

- I. Introduction
- II. VITESSE DE RÉACTION
- III. ORDRE DE LA RÉACTION
- III-1- Réaction d'ordre zéro
- III-2- Réaction d'ordre 1
- III-3- Réaction d'ordre 2
- III-4- REACTION BI-MOLECULAIRE
- IV- DÉTERMINATION DE L'ORDRE PARTIEL :
- V-ENERGIE D'ACTIVATION EQUATION D'ARRHENIUS

I. Introduction

La cinétique chimique est l'étude de la cinétique des réactions chimiques. En d'autres termes, elle permet d'étudier l'évolution temporelle des quantités de réactifs au sein d'un système soumis à des transformations chimiques.

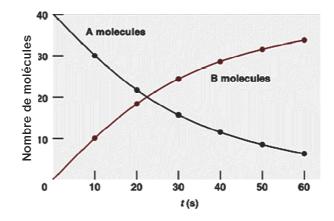
Il existe deux aspects pour une réaction chimique :

- * Aspect thermodynamique : la réaction est possible si $\Delta G_r < 0$, mais si $\Delta G_r < 0$, la réaction ne se produit pas forcément.
- * Aspect cinétique : La cinétique se propose d'étudier l'intervention du facteur temps dans les réactions chimiques c'est à dire la vitesse des réactions chimiques.

Objectifs de ce chapitre:

- Détermination des vitesses partielles et vitesse globale.
- Etre capable de déterminer les ordres partiels et l'ordre total ainsi que la constante de vitesse.
- Utiliser les équations permettant de déterminer les quantités de réactifs et de produits en fonction du temps.
- Calculer le temps de demi-réaction.
- Déterminer l'énergie d'activation d'une réaction...

II. VITESSE DE RÉACTION


1) Définition

Soit une réaction chimique :

$$V_1A_1 + V_2A_2 \Rightarrow V_3B_1 + V_4B_2$$

$$V = \frac{-1}{\nu_1} \frac{d[A_1]}{dt} = \frac{-1}{\nu_2} \frac{d[A_2]}{dt} = \frac{1}{\nu_3} \frac{d[B_1]}{dt} = \frac{1}{\nu_4} \frac{d[B_2]}{dt}$$

La vitesse d'une réaction est la variation de la concentration des réactifs(ou produits) par rapport au temps.

2) Définition du temps de réaction

a-Temps initial ou temps zéro t_o : c'est le moment du démarrage d'une réaction chimique; b- temps de demi réaction $t_{1/2}$: c'est le temps nécessaire pour que la moitié d'une réaction soit complète;

C- temps infini t 礁 on considère que la réaction a atteint un temps infini lorsque 99,9% des réactifs auront été transformés (c'est une définition abstraite)

3) Mesure de la vitesse d'une réaction chimique

On trace la courbe C = f(t) en mesurant les concentrations C d'un réactif qui disparaît ou d'un produit qui apparaît à des instants déterminés et à la température constante. Il existe plusieurs méthodes qui permettent la détermination de la concentration :

Neutralisation des solutions : acidimétrie, alcalimétrie, oxydo-réduction, complexométrie,

Mesures physiques: densité optique d'une solution (spectrophotométrie), indice de réfraction ...

III. ORDRE DE LA RÉACTION

Soit la réaction : $V_1A_1 + V_2A_2 \Rightarrow V_3A_3 + V_4A_4$

D'une manière générale la vitesse est proportionnelle aux concentrations des réactifs :

$$V = k [A_1]^{\alpha} \times [A_2]^{\beta}$$

Avec K : constante de vitesse : caractéristique d'une réaction chimique à une température donnée. Elle dépend de la température (k = k(T)).

 α : Ordre partiel par rapport à A₁.

 β : Ordre partiel par rapport à A_2 .

 $(\alpha + \beta)$ ordre global de la réaction.

L'ordre de la réaction se détermine expérimentalement :

- Soit par le calcul de k,
- Soit par la représentation graphique.

III-1- Réaction d'ordre zéro

Soit la réaction de type : $A \Rightarrow produits$

$$V = \frac{-d[A]}{dt} = K[A]^0 = K$$

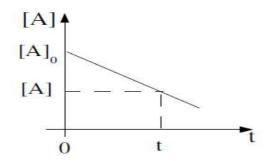
V est indépendante de la concentration

$$\Rightarrow$$
 d[A] = -k dt

$$[A] = -kt + cte$$

à
$$t = 0$$
 on a [A] = [A]₀ \Rightarrow Cte = [A]₀

$$[A]_0 - [A] = kt \implies k = ([A]_0 - [A])/t$$


La constante k s'exprime donc en mol.l-1.s-1

Vérification de l'ordre zéro

On calcule ($[A]_0$ - [A])/t) pour différentes valeurs de [A] et de t.

Si le rapport est constant, la réaction est d'ordre zéro.

Ou on trace [A] = f (t), si c'est une droite, la réaction est d'ordre zéro.

Temps de demi-réaction :

C'est le temps nécessaire à la transformation de la moitié du réactif.

à t = $t_{1/2}$, on a [A]= [A]₀/2

$$k = ([A]_0 - [A]_0/2)/t_{1/2}$$
,

$$t_{1/2} = \frac{[A]_0}{2K}$$

t_{1/2} dépend de la [A]_{0.}

III-2- Réaction d'ordre 1

Soit la réaction de type : $A \Rightarrow produits$

$$V = \frac{-d[A]}{dt} = K[A]^{1}$$

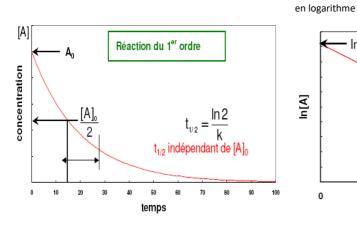
$$\Rightarrow$$
 d[A]/[A] = - k dt

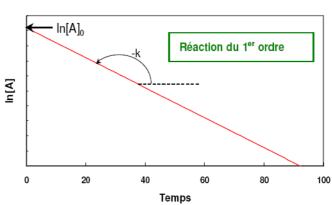
$$\Rightarrow$$
 In [A] = - k t + cte

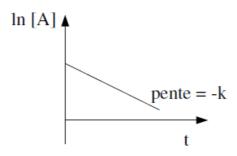
$$\Rightarrow$$
 à t = 0 on a [A] = [A]₀ \Rightarrow Cte = In [A]₀

$$ln([A]_0/[A]) = kt$$

$$\Rightarrow$$
 k = (1/t) In ([A]₀/[A]).


K s'exprime en temps⁻¹


Vérification de l'ordre 1


On calcule 1/t (In ([A]₀/[A]) pour différentes valeurs de [A] et t,

si le rapport est cte alors la réaction est d'ordre1

Ou on trace ln [A] = f(t), si c'est une droite, la réaction est d'ordre 1.

Temps de demi-réaction :

pour t = $t_{1/2}$, [A] = [A] $_0/2 \Rightarrow$ In ([A] $_0/$ ([A] $_0/2$)) = k $t_{1/2}$

 $t_{1/2}$ = (In 2) / k, $t_{1/2}$ est indépendant de [A]₀.

$$t_{1/2} = \frac{0.693}{K}$$
 K en (s⁻¹)

Exemple d'application1:

Le temps de demi-réaction d'une réaction chimique est indépendant de la concentration initiale et est égale à 20secondes.

- 1- Quel est l'ordre de la réaction?
- 2- Au bout de quel temps 90% du produit initial auront-ils disparu?

III-3- Réaction d'ordre 2

Une réaction d'ordre 2 implique nécessairement une étape bimoléculaire qui contrôle la vitesse de réaction

Soit la réaction :

$1^{er} cas [A]_0 = [B]_0$

On a donc [A] = [B] quel que soit le temps t

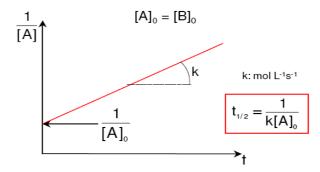
Donc
$$V = -d [A]/dt = k [A].[B] = k [A]^2$$

 $-d[A]/dt = k[A]^2$

$$-\int_{A_0}^A \frac{d[A]}{[A]^2} = K \int_0^t dt$$

$$\implies$$
 1/[A] = k t + cte

à t = 0 , [A] = [A]₀
$$\Rightarrow$$
 1/[A]₀ = cte
1/[A] = kt +1/[A]₀ \Rightarrow 1/[A] - 1/[A]₀ = kt


$$k = 1/t (1/[A] - 1/[A]_0)$$

K s'exprime en L.mol-1.temps-1

Vérification de l'ordre 2

On calcule 1/t (1/[A] - 1/[A]₀) pour différentes valeurs de t et [A]. Si cette valeur est constante, la réaction est d'ordre 2.

Ou on trace 1/[A] en fonction de t : si c'est une droite on a l'ordre 2

Temps de demi-réaction

$$1/[A] - 1/[A]_0 = kt$$

$$\dot{A} t=t_{1/2} \Rightarrow [A] = [A]_0/2$$

$$2/[A]_0 - 1/[A]_0 = kt_{1/2} \implies 1/[A]_0 = kt_{1/2}$$

$$t_{1/2}=\frac{1}{K[A]_0}$$

t_{1/2} dépend de [A]₀

2ème cas [A]0 ≠ [B]0

$$V = -d[A]/dt = -d[B]/dt = d[C]/dt = d[D]/dt$$

$$([C] = x)$$

on sait que V = k[A].[B]

Donc

Donc
$$dx/dt = k([A]_0-x)([B]_0-x)$$

$$\Rightarrow dx/([A]_0-x)([B]_0-x) = kdt$$

Or

$$\frac{1}{([A]_0-x)([B]_0-x)}=\frac{1}{([A]_0-[B]_0)}\left(\frac{1}{([B]_0-x)}-\frac{1}{([A]_0-x)}\right)$$

Donc:

$$\frac{dx}{([A]_0 - x)([B]_0 - x)} = \frac{1}{([A]_0 - [B]_0)} \left(\frac{dx}{([B]_0 - x)} - \frac{dx}{([A]_0 - x)} \right)$$

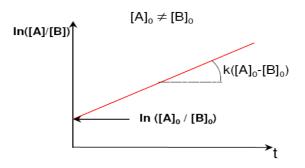
$$Kdt = \frac{1}{([A]_0 - [B]_0)} \left(\frac{dx}{([B]_0 - x)} - \frac{dx}{([A]_0 - x)} \right)$$

$$([A]_0 - [B]_0) Kdt = \left(\frac{dx}{([B]_0 - x)} - \frac{dx}{([A]_0 - x)} \right)$$

$$([A]_0 - [B]_0) Kt + cte = \ln \frac{([A]_0 - x)}{([B]_0 - x)}$$

$$([A]_0 - [B]_0) Kt + cte = -\ln([B]_0 - x) - (-\ln([A]_0 - x))$$

Or $[A]/[B] = ([A]_0-x)/([B]_0-x)$


On obtient donc

• à t=0 [A] = [A]₀ et [B] = [B]₀

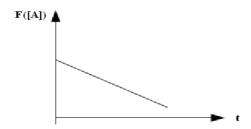
$$cte = \ln \frac{[A]_0}{[B]_0}$$

On obtient donc:

$$\ln \frac{[A]}{[B]} = ([A]_0 - [B]_0) Kt + \ln \frac{[A]_0}{[B]_0}$$

III-4- REACTION BI-MOLECULAIRE

Soit la réaction dont l'ordre est égale à p par rapport à A et nul par rapport à B :


$$\alpha A + \beta B \Rightarrow produits$$

Par conséquent V= $-1/\alpha d[A]/dt = -1/\beta d[B]/dt = k[A]^p$

Ce qui donne:

$$d[A]/[A]^p = -\alpha kt$$
 (1)

Pour vérifier l'ordre d'une telle réaction, on doit chercher quelle est la fonction F([A]) dont la représentation en fonction du temps est une droite.

1^{er} cas

Si p =1 réaction du premier ordre par rapport à A

(1) devient

$$d[A]/[A] = -\alpha kt$$

$$Ln([A]/[A]_0) = -\alpha kt$$

Et
$$t_{1/2}=\ln 2/\alpha k$$

2^{ème} cas :

Si p ≠1 par rapport à A

$$\frac{d[A]}{[A]^p} = -\alpha K dt$$

$$\int_{[A]_0}^{[A]} \frac{d[A]}{[A]^p} = -\alpha \int_0^t K dt$$

Ce qui donne

$$\frac{1}{1-p} \left[\frac{1}{[A]^{p-1}} - \frac{1}{[A]_0^{p-1}} \right] = -\alpha Kt$$

$$\frac{1}{[A]^{p-1}} - \frac{1}{[A]_0^{p-1}} = \alpha Kt(p-1)$$

Par conséquent si le tracé de $1/[A]^{p-1} = f(t)$ est une droite, alors la réaction est d'ordre p.

Exemple:

р	0	2	3
f(t)	[A]	1/[A]	1/[A] ³

IV- DÉTERMINATION DE L'ORDRE PARTIEL :

A + B
$$\Rightarrow$$
 produit
V = -d[A]/dt = -d[B]/dt = k [A] ^{α} × [B] ^{β}

Détermination de α :

On opère avec un excès de B pour que [B] = cte au cours du temps.

On pose
$$\mathbf{k} [\mathbf{B}]^{\beta} = \mathbf{k'} \Rightarrow V = -d[A]/dt = k'[A]^{\alpha}$$

On ramène le problème aux cas traités.

k': cte de vitesse apparente.

- $\sin \alpha = 0 \Rightarrow$ ordre zéro par rapport à A
- $si \alpha = 1 \Rightarrow ordre 1 par rapport à A$
- si $\alpha = 2 \Rightarrow$ ordre 2 par rapport à A

Détermination de β

On suit la même procédure que pour α (on opère avec excès de A)

$$\Rightarrow$$
 [A] = cte. V = - d[B]/dt = k'' [B] ^{β} avec k'' = K[A] ^{α}

V-ENERGIE D'ACTIVATION - EQUATION D'ARRHENIUS

La vitesse d'une réaction chimique dépend de la température. Elle augmente si T augmente.

l'influence de la température est exercé par l'intermédiaire de la constante de vitesse K .

Loi d'Arrhénius

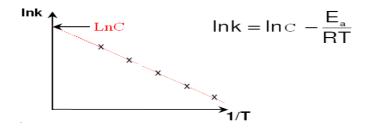
K dépend de la température selon l'équation :

$$K = C \exp(-E_a/RT)$$

E_a: énergie d'activation en (J. mole⁻¹)

R: Cte des gaz parfaits (R= 8,31 J/mol/K)

T: température absolue en Kelvin (K)


C : cte d'arrhénius

La vitesse augmente de façon exponentielle avec la température.

Détermination de l'énergie d'activation :

In
$$k = In C - (E_a/RT)$$

1- On trace Ln K en fonction de 1/T, on obtient une droite de pente égale (-E_a/RT).

2 - Ou bien on calcule k à 2 températures différentes :

à T1 :
$$\ln k_1 = \ln C - E_a/RT_1$$

à T2 :
$$\ln k_2 = \ln C - E_a / RT_2$$

$$\ln (k_1/k_2) = E_a/R (1/T_2-1/T_1)$$

$$E_a = R. (T_1T_2) / (T_1-T_2) ln K_1/K_2$$